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Computational aspects of the h, p and h-p

versions of the finite element method

Ivo Babuska {*’

Institute for Physical Science and Technology
University of Maryland, College Park, MD 20742

Terensio Scapolla (*'

Institute for Physical Science and Technology
University of Maryland, College Park, MD 20742
and
Istituto di Analisi Numerica del CNR, 27100 Pavia, Italy

1. Introduction

There are many versions and forms of finite element
methods implemented in the finite element codes. The
basic architectures of the standard finite element pro-
grams are essentially very similar. Once the class of
problems that can be solved has been selected (elastic-
ity, plates and shell problems, heat transfer etc.), one
of the main features is the variational form given to the
problem (primary, mixed, hybrid etc.) together with the
type of finite element used (conforming, non-conforming
etc.).

Nowadays several hundred of finite element program
systems are available, covering a wide range of class
of problems. Despite the great number of codes it is
very difficult to ind comparison results between differ-
ent programs. The main reason is due to the fact that
the comparison is a very complex task involving a large
number of different factors. The usual approach is to
test different methods and codes on benchmark prob-
lems (see, e.g., MacNeal and Harder |14, Robinson
and Blackham [20,21]|). Although this approach has ob-
viously various drawbacks, it gives good and concrete
data for an effective comparison. Of course additional
aspects like convergence, rate of convergence, effect of
the computer technology etc., are essential as well. Dif-
ferent simple model problems together with a theoretical
modeling are also very worthwhile.

The goal of this note is to address some results al-
lowing basic essential comparison between finite element
methods. There are three major version of the finite ele-
ment method: the standard A — version, the p - version
and the A — p version. The p—~ and A - p versions are
a recent development. In Szabo’ (25|, Guo and Babdu¥ke
[10], Swrs [23] recent advances in the p— and h - p ver-
sions are given. For a survey of the state of the art
see also Babulka [3]. We will try to make some compar-
isons between these three versions, focusing especially on
their computational aspects. We will particularly ana-
lyse the relations between the accuracy of the error and
the computational work. Of course any comparison s

(*) Work partially supported by the Office of Naval Research
under Grant N-00014-85-K-0169
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very complex, hence we will consider only some aspects
of finite element method for linear problems. Finally we
will consider a benchmark problem and we will see that
the practical results are in good agreement with the ones
based on the computational theoretical models.

3. The scheme of the finite element method

The finite element method consists of few basic
phases:

(a) Topology

By this we mean the mesh generation. The mesh
has to respect the geometry of the domain under con-
sideration and the requirement that effective and accu-
rate solution will be obtained. The mesh generation is
a very laborious part of the method also when sophis-
ticated mesh generators are available. Very often, es-
pecially in three dimensions, the mesh reflects only the
geometry.

(b) Local stif[ness matrices

The complexity of the computation of local stiffness
matrices depends on the degree of the elements and the
type of hardware used (sequential or parallel).

Let us consider here computations of a C° quadrilat-
eral element of degree p for a two Belds (elasticity in two
dimensions) problem. Using hierarchical elements (see,
e.g., Noor and Babulka|4|, Szabo’ [23]|), an element of
degree p has Q shape functions, where

(1) Q=8 , p=1

Q=2[4p+max(0, (p-2(p-3) . p>1

The second part in the formula for Q gives the number
of internal shape functions which are treated later by
condensation procedure.

Proper programmming on a sequential machine can
be made so that O(p*) operations are needed for com-
putation. An experimenetal program in the (normalised
VAX) time units leads to the computational work for the
local stiffness matrices W, , , where

\ A W) 0 Y
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(2) WL“ = 2—15' (2.5 + 0.032 ")-

Figure 1 shows, for different values of p, the time units
needed for the computation of 25 stiffness matrices.

1 2 3 4 35¢78

—_—p

Fig.1

{c) Assembly and elimination

The work needed for this phase depends on the
topology and the degree of the elements. The practi-
cally most complex topology in two dimensions is the
case of the uniform square mesh. Assuming a decompo-
sition with m? elements, the exporimental program in the
{normalised VAX) time units of the elimination methods
leads to the following expression for the computational
work W, (in the range 1 < p <8, 1 < m < 8):

(3) We = 2 + (00136 + 0.004 m®) p° .

Figure 2 shows the experimental time (in VAX units) as
a function of p and m.

We recall that in the case of uniform square mesh
the number N of degrees of freedom is the following:

(‘) N=8(m+l)’, p=1,

N =2{(m+1) +2m(m + 1)(p-1)

+m? max(0, 2 (p - 2)(p - )p > 1

(d) Postprocessing

By this we mean computations of desired values,
srror control, graphics etc. This phase is often computa-
tionally very expensive. Because the cost of this phase 18
nearly the same for all the versions of the finite element
method, we will not consider this phase.

We consider as total work of computation W only
the work needed for the phases (b) and (c). We have

(5) W = "I’ WL. + W' .

Sometimes different methods are compared with re-
spect to the number N of degrees of {freedom instead of
computational work. Hence we define a correction coef-
ficient

w
p(m,p) = N

Table 1 gives p for various m and p.
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3. The goal of the computations and the princi-
ples of comparisons of the method

As we said before, comparison of methods and codes
is & very complex problem. It depends on many factors,
one important being the man power cost needed to op-
erate the code in practical environment The goal of the
computation is to achieve the desired data in the range
of a given accuracy. We will try to assess the various
versions of the finite element method and we will con-
centrate only on the energy norm error ¢ 4 To get
reasonably valid conclusions we will use




s~ theoretical model analysis;
b- benchmark example analysis.

The main idea of the theoretical model analysis is
to assume that the energy norm error can be given as an
explicit function depending on both number and degree
of elements. We suppose that

(6) llells = ¥(m,p),

where ¥(m,p) is & known function. We will derive suit-
able expressions for the function W(m,p) so that it has
the forms close as much as possible to the theoretical es-
timates for various versions of the method. Then we will
study the dependence between the error |lef|z and the
computational work W. Although this approach has, of
course, various shortcomings, nevertheless it can lead to
valuable conclusions.

The benchmark example will be the "classical” en-
gineering problem of a simply supported rhombic plate.
We selected to present only this benchmark problem be-
cause it has different character (C' elements are used)
and our conclusions based on plane elasticity model com-
putations (C° elements) are still valid. Of course ad-
ditional informations and estimates could be here used
t0o. Nevertheless we will see that the results are in good
agresment with the conclusions based upon the theoret-
ical model for the plane elasticity.

4. Complexity of the finite element computation

The effectiveness of the method depends on the class
of problem characterising the function ¥(m,p) in (6),
which is a form of an estimate.

a) The quass unsform mesh

Let w, be the exact solution of the given problem
and ¢ be the error in the A - p version. Then in Babulka
and Swurs [6] the following estimate has been proved:

hb
(7 lellsg = "T,’ C(k) 1%allusia, -
where A is the mesh sise, 4 = min(p,k - 1), (3 is the

given domain, H*(N) the usual Sobolev space and C(k)
s constant independent of A and p but depending on &
and 1. In our case we assume that A = m"*'.

Usually the function w, can be imbedded in various
Sobolev spaces. Hence we will assume that

(8) C(k) limollwesin, = (k).

where @(k) is an a-priori known function. We can as-
sume that

(9) o) = —

with a positive, which shows that

% € H* *'(N), ¢ >0,

ww ¢ H** (N).

This type of function ®(k) expresses the case when the
function « is wniformly unsmooth over the entire do-
main or has singular behaviour in an a-priori unknown
location.

Another form we will consider is the ciass of analytic
solutions. In this case we will assume

(10) o(k) = k! d*,

where d > 1 (the coefficient d expresses the size of the
natural domain of the analyticity).

Assuming the computational work W given by (5)
and the function ®(k) by (9), we show in the figures
3,4,5,8 the dependence of the accuracy of the error ||e||,
on the computational work W (in log - log scale) for
different values of k, and & = 1. The values shown are
the minimal errors for integers & = 1,2,.,.,k, — 1 (of
course also the error in the entire range for k could be
easily computed, but it would not change the conclu-
sions). In all these figures the lines corresponding to the
values p = 1,2,...,8 are reported. On each line different
values of m = 1,2,... are considered.
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Let us now consider the case when ®(k) is given by
{10). The figures 7 and 8 show the behaviour of the error
against the computational work for two different values

of d.
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Let us now consider a class of problems where the
solution is ssnguler in & vertex of the domain. In this
case the solution has the leading singularity of the type

(11) % = r° e,

where r > 0, @ > 0 and ¢ is an analytic vector function
in §. Then in Babulka and Swrs (6] it has been proved
that

(12)  |lells = min (m" = er

The figures 9,10,11 show the accuracy of the error against
computational work for different values of a.
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So far we have mentioned only decompositions of
the given domain with uniform mesh. If the solution is
of the type (11) and an optimal mesh is used, then the
error behaviour is close to the case of the smooth solution
previously described.

b) The strongly refined mesh for the h — p version

Here we consider the solution u, belonging to the
space B} (0l) (see Guo and Babuska [11,12]). In this
case the following estimate holds for the error:

(13) llells = C ezp(~b N?¥).

The topology of the (strongly refined) mesh is equivalent
to a rectangle (not a square). Nevertheless we will use
our result for the square mesh topology (which leads to
the rate ezp(—bd N *)). In this case the degree p of the
elements that are used depends on m. We will use for
the error the relation which leads to the above estimate
and is used in [11,12]:

(14) llells = ezp(-ap) , p=[sm] ,

where [sm] denotes the integer part of sm. The figure 12
shows the error against the work when the relation (14)
is used with a = 0.5.

R"(ECLRHZY vs. COMPUTATIBNAL WORK
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1* * 1.3 = ‘;6' * 10* * 10*
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¢ =0.4. 0.6 0.8. 1.0, 1.2, 1.4 Fig.12

c) Conclusions

A careful analysis of the figures previously shown
leads to the following conclusions:

1- Only for very low required accuracy or very un-
smooth solutions (k,, a small) the lower order elements
are preferable, on a uniform mesh. However, this is not
usually the practical case.

2- The increase of the quality of the solution from
p=1to p=2is very significant and p = 2 gives some-
times reasonable errors for low but already acceptable
engineering accuracy.

3- It is safer to use elements of higher degree (3-5)
then lower ones for the effective computation. The use of

higher degree elements in general is more robust. Let us
remark that in the elasticity problem the locking effect
{for v =~ 0.5) is completely eliminated when p > 4 (see
Scott and Vogelius [27]). This is another reason to use
p23

4- If the solution is smooth or the solution has sin-
gularities but the mesh is properly refined, higher order
elements are preferable except for very low desired accu-
racy.

5- The most effective way is to combine the degree of
the elements with a properly designed mesh. Of course
the effectiveness depends very much on the proper design
of the mesh. For questions of this type we refer to Guo
and Babuska (13], Rank and Babudka [18].

6- A high practical accuracy can usually be obtained
with the elements of degree p < 8 when reasonable mesh
is used in all practical cases.
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6. A benchmark problem: tbhs rhombic plate

As we said in the introduction, the usual way to
compare different finite element methods is to test them
on a benchmark problem, where the solution is in some
way explicitly known. In order to evaluate the effective-
ness of the theoretical error analysis model previously
introduced several tests has been performed. In particu-
lar we refer to Babu¥ka and Suri [6] for various results
related to the solution of the elasticity problem of an
L-shaped domain. However, we show that our conclu-
sions are useful for more general situations beyond the
specific one from which it has been derived (of course a
similar model could be made based on available results
for plate bending problems). Hence we have analyzed
another "classical® benchmark problem, the bending of
a simply supported rhombic plate under normal loading,
to evaluate the generality of our approach.

a) The rhombic (Ksrchhof f) plate problem

The most severe test for plate elements is the so-
called Morley’s skew plate (see Morley {15,16]), which
is & uniformly loaded and simply supported plate of the
shape of an equilateral parallelogram (rhombus).

In Fig.13 a rhombic plate is shown together with a 2 x 2
mesh for triangular elements.

Fig.13

Because of the stress singularity at the obtuse cor-
ners of tha plate the convergence of the finite element
solutions has been found to be extremely slow. The sin-
gularity depends on the angle § and as § decreases the
singularity becomes stronger. Robinson [19] has com-
piled the results of many finite element codes for this
problem. The results of most of the elemnts show a very
large error for the center deflection of the plate even when
very fine mesh is used. However, no indications are given
about the real cost of using each element to get a desired
accuracy. Our main goal is to test some elements on the
rhombic plate taking into account accuracy and compu-
tational work.
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(b) The finite elements

Several finite elements for plate are known. We have
restricted our attention to con forming elements, that is
elements satysfying the C'-condition, allowing the dis-
crete approximation space to be included in the contin-
uous one. The main reason is that conforming elements
have some good properties of monotonicity (i.e. for the
energy) enabling an effective control of the error. However
in many codes non-conforming elements are used.

The elements we have tested are the following:

1- reduced Hsieh-Clough-Tocher triangle (HCTR),
2- assumed stress hybrid triangle (HYBR),
3- Argyris triangle (ARGY).

The Fig.14 shows, with the usual convention for no-
tation, the type of degrees of freedom associated with
each type of element. For details we refer to {8] for
HCTR, (7,17] for HYBR, 1] for ARGY.

HCTR

»

HYBR

Fig.14

We only recall that the following abstract error es-
timates hold provided a sufficiently smoothness of the
solution:

lelle < € hl{uils
for both HCTR and HYBR elements,

liells < C A* [lulls

for ARGY element.

(c) The numerical results

Numerous tests have been performed for different
shapes of the plate and for different boundary conditions
Here we focus our attention on the energy error obtained
for various values of the angle §. We have considered a
plate with the following data: -
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side length a = 1.0 n,

thickness ¢t = 0.01 in,

Young’s modulus E = 30 x 10° {b/in,
Poisson’s ratio v = 03

normal load p = 1.0 Ib/in?.

For the plate problem we have computed the (rela-
tive) energy error, defined in the following way:

et = (E2222) "+ oo,

where E;, E; represent the exact and the computed
energy, respectively. The computation has been carried
out using routines of the code MODULEF (see [9]) and
the final linear system has been solved by Cholesky pro-
cedure. The computation was performed on an Apollo
DN300 computer. We have used existing subroutines to
avoid any bias on the reached conclusions.

The Fig.15,16 show the behaviour of the energy er-
ror against the total time of computation for different
values of the angle §. As expected, the error increases as
the angle 6§ decreases. However we note that in all the
situations the higher degree element ARGY gives bet-
ter performances over the lower degree elements HCTR
and ARGY. More important, if we compare these results
with the Fig.9,10,11 we see the agreement between our
model and the concrete numerical results.

To better understand the equivalence we show in
Fig.17,18 the lines corresponding to degrees p=1 (HCTR
and HYBR element) and p=4 (ARGY element) for values
of a=0.8 and a=0.2 based on computation using relation
(12) (in the same way as Fig.9,10,11 were computed).
These values of the parameter describing the singular-
ity are theoretically related to the values of §=80 and
§=30, respectively. The direct comparison (Fig.15 and
17; Fig.16 and 18) shows a good agreement between our
model and practical results.

ENERGY ERROR vs. TOTAL TIME
T—r—rt T v

Tt T

oner gy $rcor

R T e

totol Lime for occmpuleliesal work

CELTA = 80 Fig.15

ENERGY ERRAR vs. TOTAL T'ME
100 vy — ey
wvy@a
" .................................... Ao e e, .
|
B 80 [ NN 1
$ I
5 |
e

: i
i
!
................ I
"
'
|
i

10 10’ 10
Lotal Lime for ocmpulatiosal work

DELA & 30 Fig.16

ACCURACY 1. COMPUTATIONAL WARK
T T

soeputotional work

are :os Fig.17

ACCURACY vs. COMPUTATIONAL WCRK
vy v v T —r T

!

I

0.2 - R .

10 10" [t )

ssapuilel tonol worl
AP T 02 Fll.ls




8. Conclusions

1- Models of computational complexity based on
theoretical error estimates for typical classes of solutions
and measured computer timing of benchmark problems
leads to reliable assesment and conclusions for computa-
tional comparisons of the finite element methods.

2- Higher order elements are preferable because they
usually need smaller computational effort for the same
accuracy of error. Moreover, high degree elements are
much more robust (e.g. also with respect to the locking
problem). The less favourable effectiveness in compari-
son with lower order elements in extreme situations is
significantly outweighed by very good performance in
normal situations, especially using a "reasonable” mesh.

3- The concrete conclusions previously listed down
in section 4c) are valid for large classes of problems.

4- Our comparisons were based on the performance
with respect to the energy norm. We expect the same
conclusions for other norms and performance measures
although a larger emphasis could be necessary on the
used mesh (e.g. dealing with the pollution problem; see
Babuska and Oh [5]).

5- We did not address the question of man power
cost. For the comparison of this type in industrial envi-
ronment we refer to Barnhart and Heisemann [2] where
higher order elements were shown highly preferable.

6- We did not address here the question of the rela-
tion of the quality results assessment (see, e.g., Noor and
BabuXka [4]) to the degree of the elements. This field is
quite new for all methods. Nevertheless hierarchical in-
crease of p leads to a simple and effective error control
for all data of engineering interest based on various types
of extrapolation (see, e.g., [23,24,26]).

7- We did not address the effectiveness of the finite
element treatment of various mathematical formulations
of the same problem (for example Kirchhoff and Mindlin-
Reissner models for plate etc.). This comparisons will be
made in a forthcoming paper.
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The Laboratory for Numerical analysis is an integral part of the
Institute for Physical Science and Technology of the University of Maryland,
under the general administration of the Director, Institute for Physical
Science and Technology. It has the following goals:

0 To conduct research in the mathematical theory and computational
implementation of numerical analysis and related topiecs, with emphasis
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

o] To help bridge gaps between computational directions in engineering,
physics, etc., and those in the mathematical community.

o] To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington
Metropolitan area.

o To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.

o] To be an international center of study and research for foreign
students in numerical mathematics who are supported by foreign govern-
ments or exchange agencies (Fulbright, etec.)

Further information may be obtained from Professor I. Babu§ka, Chairman,

Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742,
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